=PiL

Automatisation
des tests

Sandy Ingram

+ Architecture

Software Spring 2025 — Micro 371

=PrL

B ARCHITECTURE LOGICIELLE

Plan du cours

= Définition du tests agile

= Approches de tests (TDD, BDD)
= Type de tests (tests unitaires, tests d’intégration, tests systemes,

tests non fonctionnels)
= Pyramide de tests
= Quadrants de test agiles
= Doublons de tests

Sandy Ingram N

=PrL

Définition de “tests agiles”

=PFL - Test Agile

- Automatiser les tests pour faciliter les tests “continus” dans le cadre
du développement agile (CI/CD).
- les tests manuels doivent étre réduits au minimum.

- Reésoudre les “bugs” le plus vite possible, sans délai.

- Lier le développement au test et a I'assurance qualité (les réles
peuvent aussi se chevaucher).

- Tester tot.

=7l A propos de 'automatisation des tests

FIRST WE
AUTOMATED THE
TESTING...

THEN WE AUTOMATED
THE DEVELOPMENT...

THEN WE AUTOMATED
THE DESIGN.

"WHAT'S THE

HARMP"
YOu

EPFL Lautomatisation des tests permet les tests “continus”

- L’automatisation des tests facilite la maintenance du code.

- Les tests manuels doivent étre réduits au minimum
(~<15%).

- Les tests doivent étre automatiquement lancés a chaque
mise a jour du code.

- Les tests automatisés sont intégrés dans le pipeline CI/CD.

EPFL Alors méme que le développement agile est
relativement bien répandu ...

HAS YOUR ORGANIZATION ADOPTED AN
AGILE DEVELOPMENT METHODOLOGY?

NO

0% 20% 40% 60% 80% 100%

2016 Report by Sauce Labs involving 520 software professionals

EPFL Les tests automatiques n'ont pas évolué alaméme
vitesse que d’autres aspects du développement agile

HOW WOULD YOU CHARACTERIZE THE AMOUNT OF EFFORT
THAT IS PUT INTO AUTOMATED AND MANUAL TESTING?

40%
36%

35% 34%

30% T E e s = N
| 9 '
25% ; 3% |
9 | o, l
20% : 2 6 A |
15% | [
| |
10% | |
= 3% |
5% ! " |

: =
0% 1 |
Full (Some automation, Fairly even between | Mostly automated, Full aut ted I
L yamanua but mostly manual manual & automated | but some manual qattomate |

EPFL Résolution des “bugs” au plus vite

HOW QUICKLY ARE BUGS THAT ARE
FOUND DURING TESTING FIXED?

They are put in a bug
system & prioritized

24%

Immediately

23%

More than a
few days

5%

Within a few
working days

48%

2016 Report by Sauce Labs involving 520 software professionals

=PrL

B ARCHITECTURE LOGICIELLE

Test tot

HOW WOULD YOU DESCRIBE THE PLACE OF TESTING
& QA IN YOUR DEVELOPMENT PROCESS?

“Back-end" - major features
are passed for testing only
when they are done

17%

“Micro-iterative” - features are

broken into small testable
requirements that are

quickly iterated

24%

“Iterative” - individual features
are tested as they are
developed without waiting
for a major revision

59%

2016 Report by Sauce Labs involving 520 software professionals

- Diviser chaque fonctionnalité en petites unités testables.

- Soumettre le code avec ses tests

- Soumettre les tests pour I'assurance qualité, avant méme la
réalisation compléte de la fonctionnalité a développer

10

=PrL

Approches de test
TDD, BDD

=PFL - TDD pour “Test Driven Development”

AN

e TDD consiste en un processus itératif de test consistent
a réaliser le test avant le code de la fonction a
développer.

geok & poke

AN

e TDD estindépendant du langage de programmation et I
applicables a différents types ou niveau de tests. L

I ALWAYS
START WITH A
TEST

AN

TDD

12

TDD en bref

Définir les inputs et outputs.
Choisir une signature pour la fonction a
réaliser.

Se concentrer sur un seul aspect de cette
fonction.

Implémenter d’abord le test pour cet aspect.
Le test doit échouer a ce stade, autrement il
ne teste pas cet aspect en particulier!

Implémente la fonction correspondante.
Refactoriser le code si applicable.

Reprendre depuis I'étape 3.

13

=PfL Avantages du TDD

= Garantit une couverture de tests élevée (proportion de code
actuellement testée).

= Réduit les “bugs”.

14

=PrL

BDD pour “Behavior Driven
Development”

= Se focalise sur le “comportement” (est-ce bien le comportement
attendu qui est réalisé ou pas?) et non pas sur comment ce
comportement a été codé.

= Le comportement est exprimé avec une syntaxe compréhensible

15

=Pl BDD pour “Behavior Driven
Development”

= BDD augmente la compréhension mutuelle entre développeurs
“business” et IT.

= Les “stakeholders” expriment leur besoins en rédigeant des
scenarios de test “haut niveau”

= Les développeurs traduisent ces besoins en tests automatiques.

= BDD permet de formaliser et lier explicitement les scénarios de
test haut-niveau avec le test correspondant.

16

=7l Exemple de BDD avec la librairie
Cucumber

Les besoins (features) sont exprimés avec *Gherkin* en se
concentrant sur le “quoi” et pas le “comment”

Feature: Users must be able to search for content using ‘the
Search” buftton.

Scenario: Search for a term.
Given Given | have entered “watir” into the query.
When | click “Search”

Then | should see some result.

h Iwww. rial int.com, mber, mber_ri ing.htm

17

https://cucumber.io/docs/gherkin/reference/

EPFL Voici un exemple complet réalisé avec Cucumber
Slide optionnel uniquement pour information

The corresponding test

Feature Description File (Gherkin): const { Given, When, Then } =

require ('cucumber') ;

Addition

Test if calculator adds two positive numbers correctly const assert = require ('assert')
Addition of two positive numbers "i‘”\. ar expressions
I have number 2 in calculator « »|//// Your steg definitions /////
I entered number 3 TN - N
I should see result 5 Give /~I have number (\d+) in \

calcui@tor$/, function (num) {j%
this.setTo (num) ;
b

Tested module

const { setWorldConstructor } = require(‘cucumber’) When (/~I entered number (\d+)$/, function
(num) {

class CustomWorld { this.incrementBy (num) ;

constructor() {)
this.variable = 0 1)

J 'hen (/~I should see result (\d+)$/,
setTo(number) { function (result) ({

this.variable = number assert.equal (this.variable,
} parselnt (result));

incrementBy(number) { b i

this.variable += number
}
}

setWorldConstructor(CustomWorld)

=PrL

Synthése des approches de tests

TDD se concentre sur rédiger le test du code avant le code a
tester.

BDD se concentre sur tester le comportement d’'une fonction
par rapport a la spec ou aux besoins business.

Les deux approches sont tout a fait complémentaires.

20

=PrL

Quadrants de tests

EPFL Tests orientés business vs tests orienteés
technologies

Business
Facing Tests

Le systeme développé
est pertinent?

Technology Facing Tests
Le développement est bien fait?

22

=PFL - Quadrants de tests Agile

Automation
and Manual Business Facing

Testing

Manual
Testing

Supporting the team
pnpoid anbid

Unit and o
Automation Technology Facn‘g

Testing

23

=PrL

B ARCHITECTURE LOGICIELLE

Une autre représentation des quadrants
Agiles de Tests

24

=PrL

Types (et étapes) de tests

-

PrL

Q1 tests unitaires

Est écrit par les développeurs de la fonction/unité testée.

Teste si une unité fonctionne comme attendu, de maniére isolée,
répétée, et automatisée.

Requiert habituellement des doublons de tests afin de pouvoir tester
une unité de code séparément de ces dépendances et pouvoir
reproduire le test; Si le test efface ou modifie les doublons de tests
c’est OK, car ces derniers sont recréés a chaque test.

26

=PrL

Q1 Tests de composants

o Est écrit par les développeurs.

o White Box testing: se concentre sur le code du composant, sans se
soucier des services externes et en dépendre.

o Les objets réels sont utilisés pour toutes les fonctions ou classes
propres au composant (contrairement au test unitaire).
un doublon = testing double

o Les doublons de tests ne concernent que les classes ou fonctions
d’autres composants que celui testeé.

27

Samuel Fringeli
un doublon = testing double

=PrL

Q1 (du quadrant agile) Tests d’intégration

e Est aussi écrit par les développeurs.

e Black Box testing: teste l'intégration entre des composants, les
(micro-)services externes.

e Plus lent que les tests unitaires, mais plus rapides que les tests
d’acceptance (ou test systemes) qui implique tous les composants
d’un systéme.

28

=PFL - Types de tests

_ Tester si chaque fonction, ou unité de code
Test Unitaires se comporte comme attendu

29

30

=PFL - Types de tests

Tester si une combinaison ou un ensemble d’unités pour voir s’il

Tests d’intégration y a des erreurs liées a l'interaction entre ces unités.

Tester si chaque fonction, ou unité de code
se comporte comme attendu

Test Unitaires

31

=PFL - Types de tests

Test Systemes

Tests d’intégration

Tester si une combinaison ou un ensemble d’unités pour voir s’il
y a des erreurs liées a l'interaction entre ces unités

Tester si chaque fonction, ou unité de code
se comporte comme attendu

Test Unitaires

32

=PFL - Types de tests

Tests d’acceptance des “User Acceptance Tests”: tester I'acceptabilité du systeme, son
utilisateurs adéquation avec les besoins business

! Aussi dits “acceptance tests” ou tests E2E (end to end): tester un
Test Systemes systeme dans son entité (a ne pas confondre avec les User
Acceptance Tests”.

Tester si une combinaison ou un ensemble d’unités pour voir s’il
Tests d’intégration y a des erreurs liées a l'interaction entre ces unités

Tester si chaque fonction, ou unité de code
Test Unitaires se comporte comme attendu

=PFL - Exemple concrets de tests pour
mieux comprendre

= Test unitaire: tester si quand je clique sur un bouton de “sauvegarder” avec les champs
correctement remplies(en supposant que toute la communication avec les restes des
modules émulés fonctionnent correctement), je recois un message “mesures
sauvegardées’.

= Test d’intégration: communication backend et base de données, ou communication
capteurs et serveur communication interface utilisateurs et serveur backend. Par
exemple, tester si le serveur backend envoie a la base de données des données
valides a sauver, indépendamment de tout le reste, cette communication fonctionne
bien et il regoit en retour I'ID de I'entrée rajoutée dans la base de données.

= Test E2E: tester si quand je clique sur un bouton de “sauvegarder” avec les champs
correctement remplies, une requéte est envoyée au serveur Web lequel communique
avec la base de données, les données envoyées sont bel et biens sauvées et je regois
un message “mesures sauvegardees”.

=PrL

Quelles sont les deux conclusions principales
de cette pyramide de tests?

34

fLGlace ou Pyramide?

Manual Tests

Automated
GUI Tests

Automated AP| Tests

Automated Integration Tests

Automated Component Tests

Automated
GUI Tests

Integration
Tests

Automated Unit Tests

=PrL

Doublons de tests

38

=PrL

Doublons de tests

Comme les cascades au cinéma

https://www.vulyplay.com/img/blog/trampoline-stunts-movies-|

rotechnics.j

39

=PrL

Types de doublons de tests

= Le terme de “Test Doubles” a été introduit par Meszaros dans son livre “xUnit Test Patterns”.
= On en distingue trois types: Les fakes, stubs, et les mocks.

= Dans certains cas, on parle aussi d’'un 4eme type: les spys.

40

=PFL - Les “Stubs”)

= Ne contiennent pas de logique.

= Quand ils sont appelés, ils retournent des valeurs prédéfinies pour permettre
au test d’avancer a la prochaine étape.

= |Is remplacent donc un vrai appel retournant des vrais valeurs.

Stub
Pour tester la fonction “averageGrades” en isolation de

la DB, on remplace I'appel a la DB, pour un retour de

P N valeurs prédéfinies isolant tout éventuel probléme liée a

la communication avec la DB et se concentrer sur le test

o ingud oo de la fonction de calcul de la moyenne pour autant
O——=0

”s
<

..
8 ooP: 8 %o
P 6
DB: 10

https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da

» gu’elle regoive les données attendues.

A~

=PrL - | es “Fakes” -

= En comparaison avec les “stubs”, les “fakes” sont un peu plus proches de
I'objet réel.
= En général, celui qui gére I'objet réel, écrit aussi son “fake”.

Fake

AccountDAO

DB
.
."

getPasswordHash()

(@

HashMap

FakeAccountDAO

Fake
i implementation

=Pl |Les “Mocks” ”

= Les “Mocks” permettent de tester l'interaction entre deux composants ou
fonctions, services.

= |Is sont typiquement utiles, lorsque les fonctions impliquées dans le
test, ne retournent pas de valeurs.

= Le test se concentre sur si la fonction a été appelée au bon moment (ou
encore si elle a été appelée autant de fois qu’attendu).

Mock

WindowMock Le test échoue si la fonction
testé n'est pas appelée comme
attendu.

action to verify DoorMock

https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da

=PrL

“Stub” ? “Mock” ?

public interface MailService ({
public void send (Message msg) ;
}
public class MailServiceStub implements
MailService {
private List<Message> messages = new
ArrayList<Message> () ;
public void send (Message msg) {
messages.add (msqg) ;
}
public int numberSent () {
return messages.size();
}
}

// We can then use state verification on the stub like this.
class OrderStateTester...

public void testOrderSendsMailIfUnfilled ()
Order order = new Order (TALISKER, 51);
MailServiceStub mailer = new
MailServiceStub() ;
order.setMailer (mailer) ;
order.fill (warehouse) ;
assertEquals (1, mailer.numberSent());

}

{

Class OrderlnteractionTester...

public void testOrderSendsMailIfUnfilled()

{
Order order = new Order (TALISKER, 51);
Mock warehouse = mock (Warehouse.class);
Mock mailer = mock(MailService.class);
order.setMailer ((MailService)

mailer.proxy());

mailer.expects (once()) .method("send");
warehouse.expects (once ()) .method ("hasInventory")
.withAnyArguments ()

.will (returnValue (false));

order.fill ((Warehouse)

warehouse.proxy ()) ;

1
L

https://martinfowler.com/articles/mocksArentStubs.html

44

=PFL . Que fait ce test?

W???2?2?2?22?2?2?2” : function(){
var message = 'an example message';
var stub = sinon.stub().throws() ;
var spyl = sinon.spy();
var spy2 = sinon.spy();

PubSub. subscribe (message, stub);
PubSub. subscribe (message, spyl);
PubSub. subscribe (message, spyZ2);

PubSub.publishSync (message, undefined) ;

assert (spyl.called) ;
assert (spy2.called) ;
assert (stub.calledBefore (spyl))

7

- Dans la librairie Sinon.js, de laquelle cet exemple a été extrait :

- Les Stubs permettent de modifier les comportements, les valeurs de retour du doublons de test (par
exemple lever une exception).

- Les Spys permettent simplement d’enregistrer les appels de fonction, les valeurs de retour, et les
éventuelles exceptions levées.

- Les Mocks API, implémente les Stubs et les Spy APls.

45

=PrL

Que fait ce test?

"test should call all subscribers, even if there are exceptions" : function() {
var message = 'an example message';
var stub = sinon.stub().throws(); Why is a stub used here and not a spy?
var spyl = sinon.spy();
var spy2 = sinon.spy();

PubSub.subscribe (message, stub);
PubSub.subscribe (message, spyl);
PubSub.subscribe (message, spy2);

PubSub.publishSync (message, undefined);
assert (spyl.called);

assert (spy2.called);
assert(stub.calledBefore (spyl));

46

=PFL Realisation du test avec un mock

"test should call all subscribers even with exceptions": function ()
{
var myAPI = { method: function () {} };

var sSpy = sinon.spy ()
var mock = sinon.mock (myAPI) ;

mock .expects (“method") .once () .throws(); // throw an exception
PubSub.subscribe ("message", myAPI.method) ;

PubSub.subscribe ("message", spy);

PubSub.publishSync ("message”, undefined);;

mock.verify (),

assert (spy.calledOnce) ;

} https://github.com/cypress-io/sinon/blob/master/docs/_releases/v2.4.0/mocks.md

=L Spécificités des tests systemes
embarques

= Sont plus chronophages que les tests de logiciels
= Sont plus colteux surtout s’il y a des “bugs” a résoudre (quand le systeme est déja assemblé)

= Dépendant au prototype “hardware” donc moins flexible que les tests de de logiciels

= Nécessite une connaissance de I'architecture logicielle mais aussi des composants “hardware”:

capteurs, PCBs ou circuits imprimeés, dispositifs IOT (Internet of things).

48

=PFL

B ARCHITECTURE LOGICIELLE

Réferences

. Scenario Outlines with Cucumber (Scenario Templates)

. xUnit Test Patterns Book

. Test Doubles

. Testing trends in 2016

. Testing Pyramid (Unit, Service, Ul) by Mike Kohn.
= Agile testing Automation

= Adgile testing matrix by Brian Marick.

= Adgile testing book with Agile test Quadrants

= Azure devOps: creating test plans and test suits.

)]
(=]

Sandy Ingram

https://cucumber.io/docs/gherkin/reference/#scenario-outline
http://xunitpatterns.com/Test%20Double%20Patterns.html
https://testing.googleblog.com/2013/07/testing-on-toilet-know-your-test-doubles.html
http://cdn.agilitycms.com/sauce-labs/white-papers/sauce-labs-state-of-testing-2016.pdf
https://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-%20%20the-test-automation-pyramid
http://swtester.blogspot.com/2015/04/agile-testing-automation.html
http://swtester.blogspot.com/2015/04/agile-testing-automation.html
http://www.exampler.com/old-blog/2003/08/22/#agile-testing-project-2
https://agiletester.ca/more-agile-testing-the-book/
https://docs.microsoft.com/en-us/azure/devops/test/create-a-test-plan?%20%20view=azure-devops&viewFallbackFrom=azure-devops-plan%3Fview%3Dazure-devops

