
Automatisation
des tests

Sandy Ingram

Spring 2025 – Micro 371
• Architecture

Software

▪ Définition du tests agile
▪ Approches de tests (TDD, BDD)
▪ Type de tests (tests unitaires, tests d’intégration, tests systèmes,

tests non fonctionnels)
▪ Pyramide de tests
▪ Quadrants de test agiles
▪ Doublons de tests

Plan du cours
A

R
C

H
IT

E
C

TU
R

E
 L

O
G

IC
IE

LL
E

S
an

dy
 In

gr
am

2

Définition de “tests agiles”

3

- Automatiser les tests pour faciliter les tests “continus” dans le cadre
du développement agile (CI/CD).

- les tests manuels doivent être réduits au minimum.

- Résoudre les “bugs” le plus vite possible, sans délai.

- Lier le développement au test et à l’assurance qualité (les rôles
peuvent aussi se chevaucher).

- Tester tôt.

Test Agile 4

A propos de l’automatisation des tests 5

- L’automatisation des tests facilite la maintenance du code.
- Les tests manuels doivent être réduits au minimum

(~<15%).
- Les tests doivent être automatiquement lancés à chaque

mise à jour du code.
- Les tests automatisés sont intégrés dans le pipeline CI/CD.

L’automatisation des tests permet les tests “continus” 6

7Alors même que le développement agile est
relativement bien répandu …

8Les tests automatiques n’ont pas évolué à la même
vitesse que d’autres aspects du développement agile

9Résolution des “bugs” au plus vite

2016 Report by Sauce Labs involving 520 software professionals

10Test tôt

.

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E - Diviser chaque fonctionnalité en petites unités testables.
- Soumettre le code avec ses tests
- Soumettre les tests pour l’assurance qualité, avant même la

réalisation complète de la fonctionnalité à développer

Approches de test
TDD, BDD

11

12TDD pour “Test Driven Development”

● TDD consiste en un processus itératif de test consistent
à réaliser le test avant le code de la fonction à
développer.

● TDD est indépendant du langage de programmation et
applicables à différents types ou niveau de tests.

13TDD en bref

1. Définir les inputs et outputs.

2. Choisir une signature pour la fonction à

réaliser.

3. Se concentrer sur un seul aspect de cette
fonction.

4. Implémenter d’abord le test pour cet aspect.
Le test doit échouer à ce stade, autrement il
ne teste pas cet aspect en particulier!

5. Implémente la fonction correspondante.

6. Refactoriser le code si applicable.

7. Reprendre depuis l’étape 3.

▪ Garantit une couverture de tests élevée (proportion de code
actuellement testée).

▪ Réduit les “bugs”.

14Avantages du TDD

15BDD pour “Behavior Driven
Development”
▪ Se focalise sur le “comportement” (est-ce bien le comportement

attendu qui est réalisé ou pas?) et non pas sur comment ce
comportement a été codé.

▪ Le comportement est exprimé avec une syntaxe compréhensible

16BDD pour “Behavior Driven
Development”
▪ BDD augmente la compréhension mutuelle entre développeurs

“business” et IT.

▪ Les “stakeholders” expriment leur besoins en rédigeant des
scénarios de test “haut niveau”

▪ Les développeurs traduisent ces besoins en tests automatiques.

▪ BDD permet de formaliser et lier explicitement les scénarios de
test haut-niveau avec le test correspondant.

17Exemple de BDD avec la librairie
Cucumber
Les besoins (features) sont exprimés avec *Gherkin* en se
concentrant sur le “quoi” et pas le “comment”

https://cucumber.io/docs/gherkin/reference/

18Voici un exemple complet réalisé avec Cucumber
Slide optionnel uniquement pour information

20Synthèse des approches de tests

▪ TDD se concentre sur rédiger le test du code avant le code à
tester.

▪ BDD se concentre sur tester le comportement d’une fonction
par rapport à la spec ou aux besoins business.

▪ Les deux approches sont tout à fait complémentaires.

Quadrants de tests

21

22Tests orientés business vs tests orientés
technologies

23Quadrants de tests Agile

24Une autre représentation des quadrants
Agiles de Tests

.

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E

Types (et étapes) de tests

25

● Est écrit par les développeurs de la fonction/unité testée.

● Teste si une unité fonctionne comme attendu, de manière isolée,
répétée, et automatisée.

● Requiert habituellement des doublons de tests afin de pouvoir tester
une unité de code séparément de ces dépendances et pouvoir
reproduire le test; Si le test efface ou modifie les doublons de tests
c’est OK, car ces derniers sont recréés à chaque test.

26Q1 tests unitaires

27Q1 Tests de composants

● Est écrit par les développeurs.

● White Box testing: se concentre sur le code du composant, sans se
soucier des services externes et en dépendre.

● Les objets réels sont utilisés pour toutes les fonctions ou classes
propres au composant (contrairement au test unitaire).

● Les doublons de tests ne concernent que les classes ou fonctions
d’autres composants que celui testé.

Samuel Fringeli
un doublon = testing double

28Q1 (du quadrant agile) Tests d’intégration

● Est aussi écrit par les développeurs.

● Black Box testing: teste l’intégration entre des composants, les
(micro-)services externes.

● Plus lent que les tests unitaires, mais plus rapides que les tests
d’acceptance (ou test systèmes) qui implique tous les composants
d’un système.

29Types de tests

Tester si chaque fonction, ou unité de code
se comporte comme attendu

30Types de tests

Tester si chaque fonction, ou unité de code
se comporte comme attendu
Tester si chaque fonction, ou unité de code
se comporte comme attendu

Tester si une combinaison ou un ensemble d’unités pour voir s’il
y a des erreurs liées à l’interaction entre ces unités.

31Types de tests

Tester si chaque fonction, ou unité de code
se comporte comme attendu

Tester si une combinaison ou un ensemble d’unités pour voir s’il
y a des erreurs liées à l’interaction entre ces unités

32Types de tests

Tester si chaque fonction, ou unité de code
se comporte comme attendu

Tester si une combinaison ou un ensemble d’unités pour voir s’il
y a des erreurs liées à l’interaction entre ces unités

“User Acceptance Tests”: tester l’acceptabilité du système, son
adéquation avec les besoins business

Aussi dits “acceptance tests” ou tests E2E (end to end): tester un
système dans son entité (à ne pas confondre avec les User
Acceptance Tests”.

▪ Test unitaire: tester si quand je clique sur un bouton de “sauvegarder” avec les champs
correctement remplies(en supposant que toute la communication avec les restes des
modules émulés fonctionnent correctement), je reçois un message “mesures
sauvegardées”.

▪ Test d’intégration: communication backend et base de données, ou communication
capteurs et serveur communication interface utilisateurs et serveur backend. Par
exemple, tester si le serveur backend envoie à la base de données des données
valides à sauver, indépendamment de tout le reste, cette communication fonctionne
bien et il reçoit en retour l’ID de l’entrée rajoutée dans la base de données.

▪ Test E2E: tester si quand je clique sur un bouton de “sauvegarder” avec les champs
correctement remplies, une requête est envoyée au serveur Web lequel communique
avec la base de données, les données envoyées sont bel et biens sauvées et je reçois
un message “mesures sauvegardées”.

33Exemple concrets de tests pour
mieux comprendre

34Quelles sont les deux conclusions principales
de cette pyramide de tests?

35Glace ou Pyramide?

Doublons de tests

38

39Doublons de tests
Comme les cascades au cinéma

▪ Le terme de “Test Doubles” a été introduit par Meszaros dans son livre “xUnit Test Patterns”.

▪ On en distingue trois types: Les fakes, stubs, et les mocks.

▪ Dans certains cas, on parle aussi d’un 4ème type: les spys.

40Types de doublons de tests

▪ Ne contiennent pas de logique.
▪ Quand ils sont appelés, ils retournent des valeurs prédéfinies pour permettre

au test d’avancer à la prochaine étape.
▪ Ils remplacent donc un vrai appel retournant des vrais valeurs.

41Les “Stubs”

Pour tester la fonction “averageGrades” en isolation de
la DB, on remplace l’appel à la DB, pour un retour de
valeurs prédéfinies isolant tout éventuel problème liée à
la communication avec la DB et se concentrer sur le test
de la fonction de calcul de la moyenne pour autant
qu’elle reçoive les données attendues.

https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da

▪ En comparaison avec les “stubs”, les “fakes” sont un peu plus proches de
l’objet réel.

▪ En général, celui qui gère l’objet réel, écrit aussi son “fake”.

42Les “Fakes”

https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da

▪ Les “Mocks” permettent de tester l’interaction entre deux composants ou
fonctions, services.

▪ Ils sont typiquement utiles, lorsque les fonctions impliquées dans le
test, ne retournent pas de valeurs.

▪ Le test se concentre sur si la fonction a été appelée au bon moment (ou
encore si elle a été appelée autant de fois qu’attendu).

43Les “Mocks”

https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da

Le test échoue si la fonction
testé n’est pas appelée comme
attendu.

44“Stub” ? “Mock” ?
Class OrderInteractionTester...

public void testOrderSendsMailIfUnfilled()

{

Order order = new Order(TALISKER, 51);

Mock warehouse = mock(Warehouse.class);

Mock mailer = mock(MailService.class);

order.setMailer((MailService)

mailer.proxy());

mailer.expects(once()).method("send");
warehouse.expects(once()).method("hasInventory")

.withAnyArguments()

.will(returnValue(false));

order.fill((Warehouse)

warehouse.proxy());

}

}

45Que fait ce test?

- Dans la librairie Sinon.js, de laquelle cet exemple a été extrait :
- Les Stubs permettent de modifier les comportements, les valeurs de retour du doublons de test (par

exemple lever une exception).
- Les Spys permettent simplement d’enregistrer les appels de fonction, les valeurs de retour, et les

éventuelles exceptions levées.
- Les Mocks API, implémente les Stubs et les Spy APIs.

46Que fait ce test?

47Réalisation du test avec un mock

▪ Sont plus chronophages que les tests de logiciels

▪ Sont plus coûteux surtout s’il y a des “bugs” à résoudre (quand le système est déjà assemblé)

▪ Dépendant au prototype “hardware” donc moins flexible que les tests de de logiciels

▪ Nécessite une connaissance de l’architecture logicielle mais aussi des composants “hardware”:

capteurs, PCBs ou circuits imprimés, dispositifs IOT (Internet of things).

48Spécificités des tests systèmes
embarqués

S
an

dy
 In

gr
am

50

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E

▪

▪ Scenario Outlines with Cucumber (Scenario Templates)

▪ xUnit Test Patterns Book

▪ Test Doubles

▪ Testing trends in 2016

▪ Testing Pyramid (Unit, Service, UI) by Mike Kohn.

▪ Agile testing Automation

▪ Agile testing matrix by Brian Marick.

▪ Agile testing book with Agile test Quadrants

▪ Azure devOps: creating test plans and test suits.

Références

https://cucumber.io/docs/gherkin/reference/#scenario-outline
http://xunitpatterns.com/Test%20Double%20Patterns.html
https://testing.googleblog.com/2013/07/testing-on-toilet-know-your-test-doubles.html
http://cdn.agilitycms.com/sauce-labs/white-papers/sauce-labs-state-of-testing-2016.pdf
https://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-%20%20the-test-automation-pyramid
http://swtester.blogspot.com/2015/04/agile-testing-automation.html
http://swtester.blogspot.com/2015/04/agile-testing-automation.html
http://www.exampler.com/old-blog/2003/08/22/#agile-testing-project-2
https://agiletester.ca/more-agile-testing-the-book/
https://docs.microsoft.com/en-us/azure/devops/test/create-a-test-plan?%20%20view=azure-devops&viewFallbackFrom=azure-devops-plan%3Fview%3Dazure-devops

